
NAG C Library Function Document

nag_pde_parab_1d_fd_ode (d03phc)

1 Purpose

nag_pde_parab_1d_fd_ode (d03phc) integrates a system of linear or nonlinear parabolic partial differential
equations (PDEs) in one space variable, with scope for coupled ordinary differential equations (ODEs).
The spatial discretization is performed using finite differences, and the method of lines is employed to
reduce the PDEs to a system of ODEs. The resulting system is solved using a backward differentiation
formula method or a Theta method (switching between Newton’s method and functional iteration).

2 Specification

#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1d_fd_ode (Integer npde, Integer m, double *ts, double tout,

void (*pdedef)(Integer npde, double t, double x, const double u[],
const double ux[], Integer ncode, const double v[], const double vdot[],
double p[], double q[], double r[], Integer *ires, Nag_Comm *comm),

void (*bndary)(Integer npde, double t, const double u[], const double ux[],
Integer ncode, const double v[], const double vdot[], Integer ibnd,
double beta[], double gamma[], Integer *ires, Nag_Comm *comm),

double u[], Integer npts, const double x[], Integer ncode,

void (*odedef)(Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[], const double ucp[],
const double ucpx[], const double rcp[], const double ucpt[],
const double ucptx[], double f[], Integer *ires, Nag_Comm *comm),

Integer nxi, const double xi[], Integer neqn, const double rtol[],
const double atol[], Integer itol, Nag_NormType norm, Nag_LinAlgOption laopt,
const double algopt[], double rsave[], Integer lrsave, Integer isave[],
Integer lisave, Integer itask, Integer itrace, const char *outfile, Integer *ind,
Nag_Comm *comm, Nag_D03_Save *saved, NagError *fail)

3 Description

nag_pde_parab_1d_fd_ode (d03phc) integrates the system of parabolic-elliptic equations and coupled
ODEs

Xnpde
j¼1

Pi;j

@Uj

@t
þ Qi ¼ x�m @

@x
xmRið Þ, i ¼ 1; 2; . . . ;npde, a � x � b, t � t0, ð1Þ

Fi t;V ; _V ; �;U
�;U �

x ;R
�;U �

t ;U
�
xt

� �
¼ 0, i ¼ 1; 2; . . . ; ncode, ð2Þ

where (1) defines the PDE part and (2) generalizes the coupled ODE part of the problem.

In (1), Pi;j and Ri depend on x, t, U , Ux and V ; Qi depends on x, t, U , Ux, V and linearly on _V . The
vector U is the set of PDE solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ;Unpde x; tð Þ
h iT

,

and the vector Ux is the partial derivative with respect to x. The vector V is the set of ODE solution values

V tð Þ ¼ V 1 tð Þ; . . . ;V ncode tð Þ
h iT

,

and _V denotes its derivative with respect to time.

d03 – Partial Differential Equations d03phc

[NP3660/8] d03phc.1

In (2), � represents a vector of n� spatial coupling points at which the ODEs are coupled to the PDEs.
These points may or may not be equal to some of the PDE spatial mesh points. U �, U�

x , R
�, U �

t and U �
xt

are the functions U , Ux, R, Ut and Uxt evaluated at these coupling points. Each Fi may only depend
linearly on time derivatives. Hence the equation (2) may be written more precisely as

F ¼ G� A _V � B
U �

t

U�
xt

� �
, ð3Þ

where F ¼ F1; . . . ;Fncode

h iT
, G is a vector of length ncode, A is an ncode by ncode matrix, B is an

ncode by n� � npde
� �

matrix and the entries in G, A and B may depend on t, �, U�, U �
x and V . In

practice you only need to supply a vector of information to define the ODEs and not the matrices A and B.
(See Section 5 for the specification of the user-supplied function odedef.)

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xnpts are

the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xnpts. The co-ordinate system in space

is defined by the values of m; m ¼ 0 for Cartesian co-ordinates, m ¼ 1 for cylindrical polar co-ordinates
and m ¼ 2 for spherical polar co-ordinates.

The PDE system which is defined by the functions Pi;j, Qi and Ri must be specified in a function pdedef
supplied by you.

The initial values of the functions U x; tð Þ and V tð Þ must be given at t ¼ t0.

The functions Ri which may be thought of as fluxes, are also used in the definition of the boundary
conditions. The boundary conditions must have the form

�i x; tð ÞRi x; t;U ;Ux;Vð Þ ¼ �i x; t;U ;Ux;V ; _V
� �

, i ¼ 1; 2; . . . ;npde, ð4Þ

where x ¼ a or x ¼ b.

The boundary conditions must be specified in a function bndary provided by you. The function �i may
depend linearly on _V .

The problem is subject to the following restrictions:

(i) In (1), _V j tð Þ, for j ¼ 1; 2; . . . ;ncode, may only appear linearly in the functions Qi, for
i ¼ 1; 2; . . . ; npde, with a similar restriction for �;

(ii) Pi;j and the flux Ri must not depend on any time derivatives;

(iii) t0 < tout, so that integration is in the forward direction;

(iv) the evaluation of the terms Pi;j, Qi and Ri is done approximately at the mid-points of the mesh
x½i� 1�, for i ¼ 1; 2; . . . ; npts, by calling the function pdedef for each mid-point in turn. Any
discontinuities in these functions must therefore be at one or more of the mesh points x1; x2; . . . ; xnpts;

(v) at least one of the functions Pi;j must be non-zero so that there is a time derivative present in the PDE
problem;

(vi) if m > 0 and x1 ¼ 0:0, which is the left boundary point, then it must be ensured that the PDE solution
is bounded at this point. This can be done by either specifying the solution at x ¼ 0:0 or by
specifying a zero flux there, that is �i ¼ 1:0 and �i ¼ 0:0. See also Section 8 below.

The algebraic-differential equation system which is defined by the functions Fi must be specified in a
function odedef supplied by you. You must also specify the coupling points � in the array xi.

The parabolic equations are approximated by a system of ODEs in time for the values of Ui at mesh
points. For simple problems in Cartesian co-ordinates, this system is obtained by replacing the space
derivatives by the usual central, three-point finite-difference formula. However, for polar and spherical
problems, or problems with nonlinear coefficients, the space derivatives are replaced by a modified three-
point formula which maintains second order accuracy. In total there are npde� nptsþ ncode ODEs in
the time direction. This system is then integrated forwards in time using a backward differentiation
formula (BDF) or a Theta method.

d03phc NAG C Library Manual

d03phc.2 [NP3660/8]

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific Software
Systems (ed J C Mason and M G Cox) 59–72 Chapman and Hall

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems using
the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff
differential equations Appl. Numer. Math. 9 1–19

Skeel R D and Berzins M (1990) A method for the spatial discretization of parabolic equations in one
space variable SIAM J. Sci. Statist. Comput. 11 (1) 1–32

5 Arguments

1: npde – Integer Input

On entry: the number of PDEs to be solved.

Constraint: npde � 1.

2: m – Integer Input

On entry: the co-ordinate system used:

m ¼ 0

Indicates Cartesian co-ordinates.

m ¼ 1

Indicates cylindrical polar co-ordinates.

m ¼ 2

Indicates spherical polar co-ordinates.

Constraint: 0 � m � 2.

3: ts – double * Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in u. Normally ts ¼ tout.

Constraint: ts < tout.

4: tout – double Input

On entry: the final value of t to which the integration is to be carried out.

5: pdedef – function, supplied by the user External Function

pdedef must evaluate the functions Pi;j, Qi and Ri which define the system of PDEs. The functions

may depend on x, t, U , Ux and V . Qi may depend linearly on _V . pdedef is called approximately
midway between each pair of mesh points in turn by nag_pde_parab_1d_fd_ode (d03phc).

Its specification is:

void pdedef (Integer npde, double t, double x, const double u[],
const double ux[], Integer ncode, const double v[], const double vdot[],
double p[], double q[], double r[], Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

d03 – Partial Differential Equations d03phc

[NP3660/8] d03phc.3

2: t – double Input

On entry: the current value of the independent variable t.

3: x – double Input

On entry: the current value of the space variable x.

4: u½npde� – const double Input

On entry: u½i� 1� contains the value of the component Ui x; tð Þ, for i ¼ 1; 2; . . . ; npde.

5: ux½npde� – const double Input

On entry: ux½i� 1� contains the value of the component
@Ui x; tð Þ

@x
, for i ¼ 1; 2; . . . ;npde.

6: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

7: v½ncode� – const double Input

On entry: v½i� 1� contains the value of component V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

8: vdot½ncode� – const double Input

On entry: vdot½i� 1� contains the value of component _V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

Note: _V i tð Þ, for i ¼ 1; 2; . . . ;ncode, may only appear linearly in Qj, for j ¼ 1; 2; . . . ;npde.

9: p½npde� npde� – double Output

On exit: p½npde� jþ i� must be set to the value of Pi;j x; t;U ;Ux;Vð Þ, for
i; j ¼ 1; 2; . . . ; npde.

10: q½npde� – double Output

On exit: q½i� 1� must be set to the value of Qi x; t;U ;Ux;V ; _V
� �

, for i ¼ 1; 2; . . . ;npde.

11: r½npde� – double Output

On exit: r½i� 1� must be set to the value of Ri x; t;U ;Ux;Vð Þ, for i ¼ 1; 2; . . . ; npde.

12: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE_USER_STOP.

ires ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_fd_ode (d03phc) returns to the calling function
with the error indicator set to fail.code ¼ NE_FAILED_DERIV.

13: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to pdedef.

d03phc NAG C Library Manual

d03phc.4 [NP3660/8]

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_fd_ode
(d03phc) these pointers may be allocated memory by the user and initialized with
various quantities for use by pdedef when called from nag_pde_parab_1d_fd_ode
(d03phc).

6: bndary – function, supplied by the user External Function

bndary must evaluate the functions �i and �i which describe the boundary conditions, as given in
(4).

Its specification is:

void bndary (Integer npde, double t, const double u[], const double ux[],
Integer ncode, const double v[], const double vdot[], Integer ibnd,
double beta[], double gamma[], Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: u½npde� – const double Input

On entry: u½i� 1� contains the value of the component Ui x; tð Þ at the boundary specified
by ibnd, for i ¼ 1; 2; . . . ;npde.

4: ux½npde� – const double Input

On entry: ux½i� 1� contains the value of the component
@Ui x; tð Þ

@x
at the boundary

specified by ibnd, for i ¼ 1; 2; . . . ; npde.

5: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

6: v½ncode� – const double Input

On entry: v½i� 1� contains the value of component V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

7: vdot½ncode� – const double Input

On entry: vdot½i� 1� contains the value of component _V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

Note: _V i tð Þ, for i ¼ 1; 2; . . . ;ncode, may only appear linearly in Qj, for j ¼ 1; 2; . . . ;npde.

8: ibnd – Integer Input

On entry: specifies which boundary conditions are to be evaluated.

ibnd ¼ 0

bndary must set up the coefficients of the left-hand boundary, x ¼ a.

ibnd 6¼ 0

bndary must set up the coefficients of the right-hand boundary, x ¼ b.

d03 – Partial Differential Equations d03phc

[NP3660/8] d03phc.5

9: beta½npde� – double Output

On exit: beta½i� 1� must be set to the value of �i x; tð Þ at the boundary specified by ibnd,
for i ¼ 1; 2; . . . ; npde.

10: gamma½npde� – double Output

On exit: gamma½i� 1� must be set to the value of �i x; t;U ;Ux;V ; _V
� �

at the boundary
specified by ibnd, for i ¼ 1; 2; . . . ; npde.

11: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE_USER_STOP.

ires ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_fd_ode (d03phc) returns to the calling function
with the error indicator set to fail.code ¼ NE_FAILED_DERIV.

12: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to bndary.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_fd_ode
(d03phc) these pointers may be allocated memory by the user and initialized with
various quantities for use by bndary when called from nag_pde_parab_1d_fd_ode
(d03phc).

7: u½neqn� – double Input/Output

On entry: the initial values of the dependent variables defined as follows:

u½npde� j� 1ð Þ þ i� 1� contain Ui xj; t0
� �

, for i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; npts and
u½npts� npdeþ i� 1� contain V i t0ð Þ, for i ¼ 1; 2; . . . ; ncode.

On exit: the computed solution Ui xj; t
� �

, for i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ;npts, and Vk tð Þ, for
k ¼ 1; 2; . . . ; ncode, evaluated at t ¼ ts.

8: npts – Integer Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: npts � 3.

9: x½npts� – const double Input

On entry: the mesh points in the space direction. x½0� must specify the left-hand boundary, a, and
x½npts� 1� must specify the right-hand boundary, b.

Constraint: x½0� < x½1� < � � � < x½npts� 1�.

d03phc NAG C Library Manual

d03phc.6 [NP3660/8]

10: ncode – Integer Input

On entry: the number of coupled ODE components.

Constraint: ncode � 0.

11: odedef – function, supplied by the user External Function

odedef must evaluate the functions F, which define the system of ODEs, as given in (3). If you
wish to compute the solution of a system of PDEs only (ncode ¼ 0), odedef must be the dummy
function d03pck. (d03pck is included in the NAG C Library; however, its name may be
implementation-dependent: see the Users’ Note for your implementation for details.)

Its specification is:

void odedef (Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[], const double ucp[],
const double ucpx[], const double rcp[], const double ucpt[],
const double ucptx[], double f[], Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

4: v½ncode� – const double Input

On entry: v½i� 1� contains the value of component V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

5: vdot½ncode� – const double Input

On entry: vdot½i� 1� contains the value of component _V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

6: nxi – Integer Input

On entry: the number of ODE/PDE coupling points.

7: xi½nxi� – const double Input

On entry: xi½i� 1� contains the ODE/PDE coupling points, �i, for i ¼ 1; 2; . . . ; nxi.

8: ucp½npde� nxi� – const double Input

On entry: ucp½npde� jþ i� contains the value of Ui x; tð Þ at the coupling point x ¼ �j, for
i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; nxi.

9: ucpx½npde� nxi� – const double Input

On entry: ucpx½npde� jþ i� contains the value of
@Ui x; tð Þ

@x
at the coupling point x ¼ �j,

for i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; nxi.

10: rcp½npde� nxi� – const double Input

On entry: rcp½npde� jþ i� contains the value of the flux Ri at the coupling point x ¼ �j,
for i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; nxi.

d03 – Partial Differential Equations d03phc

[NP3660/8] d03phc.7

11: ucpt½npde� nxi� – const double Input

On entry: ucpt½npde� jþ i� contains the value of
@Ui

@t
at the coupling point x ¼ �j, for

i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; nxi.

12: ucptx½npde� nxi� – const double Input

On entry: ucptx½npde� jþ i� contains the value of
@2Ui

@x@t
at the coupling point x ¼ �j, for

i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; nxi.

13: f½ncode� – double Output

On exit: f ½i� 1� must contain the ith component of F, for i ¼ 1; 2; . . . ;ncode, where F is
defined as

F ¼ G� A _V � B
U �

t

U�
xt

� �
, ð5Þ

or

F ¼ �A _V � B
U�

t

U �
xt

� �
. ð6Þ

The definition of F is determined by the input value of ires.

14: ires – Integer * Input/Output

On entry: the form of F that must be returned in the array f. If ires ¼ 1, then the equation
(5) above must be used. If ires ¼ �1, then the equation (6) above must be used.

On exit: should usually remain unchanged. However, you may reset ires to force the
integration function to take certain actions as described below:

ires ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE_USER_STOP.

ires ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_fd_ode (d03phc) returns to the calling function
with the error indicator set to fail.code ¼ NE_FAILED_DERIV.

15: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to odedef.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_fd_ode
(d03phc) these pointers may be allocated memory by the user and initialized with
various quantities for use by odedef when called from nag_pde_parab_1d_fd_ode
(d03phc).

12: nxi – Integer Input

On entry: the number of ODE/PDE coupling points.

d03phc NAG C Library Manual

d03phc.8 [NP3660/8]

Constraints:

if ncode ¼ 0, nxi ¼ 0;
if ncode > 0, nxi � 0.

13: xi½dim� – const double Input

Note: the dimension, dim, of the array xi must be at least max 1; nxið Þ.
On entry: xi½i� 1�, for i ¼ 1; 2; . . . ;nxi, must be set to the ODE/PDE coupling points.

Constraint: x½0� � xi½0� < xi½1� < � � � < xi½nxi� 1� � x½npts� 1�.

14: neqn – Integer Input

On entry: the number of ODEs in the time direction.

Constraint: neqn ¼ npde� nptsþ ncode.

15: rtol½dim� – const double Input

Note: the dimension, dim, of the array rtol must be at least

1 when itol ¼ 1 or 2;
neqn when itol ¼ 3 or 4.

On entry: the relative local error tolerance.

Constraint: rtol½i� 1� � 0 for all relevant i.

16: atol½dim� – const double Input

Note: the dimension, dim, of the array atol must be at least

1 when itol ¼ 1 or 3;
neqn when itol ¼ 2 or 4.

On entry: the absolute local error tolerance.

Constraint: atol½i� 1� � 0 for all relevant i.

17: itol – Integer Input

On entry: a value to indicate the form of the local error test. itol indicates to
nag_pde_parab_1d_fd_ode (d03phc) whether to interpret either or both of rtol or atol as a vector
or scalar. The error test to be satisfied is ei=wik k < 1:0, where wi is defined as follows:

itol rtol atol wi

1 scalar scalar rtol½0� � Uij j þ atol½0�
2 scalar vector rtol½0� � Uij j þ atol½i� 1�
3 vector scalar rtol½i� 1� � Uij j þ atol½0�
4 vector vector rtol½i� 1� � Uij j þ atol½i� 1�

In the above, ei denotes the estimated local error for the ith component of the coupled PDE/ODE
system in time, u½i� 1�, for i ¼ 1; 2; . . . ; neqn.

The choice of norm used is defined by the argument norm, see below.

Constraint: 1 � itol � 4.

18: norm – Nag_NormType Input

On entry: the type of norm to be used. Two options are available:

norm ¼ Nag_MaxNorm

Maximum norm.

norm ¼ Nag_TwoNorm

Averaged L2 norm.

d03 – Partial Differential Equations d03phc

[NP3660/8] d03phc.9

If unorm denotes the norm of the vector u of length neqn, then for the averaged L2 norm

unorm ¼

ffi
1

neqn

Xneqn
i¼1

u½i� 1�=wið Þ2
vuut ,

while for the maximum norm

unorm ¼ max
i

u½i� 1�=wij j.

See the description of the itol argument for the formulation of the weight vector w.

Constraint: norm ¼ Nag_MaxNorm or Nag_TwoNorm.

19: laopt – Nag_LinAlgOption Input

On entry: the type of matrix algebra required.

laopt ¼ Nag_LinAlgFull

Full matrix methods to be used.

laopt ¼ Nag_LinAlgBand

Banded matrix methods to be used.

laopt ¼ Nag_LinAlgSparse

Sparse matrix methods to be used.

Constraint: laopt ¼ Nag_LinAlgFull, Nag_LinAlgBand or Nag_LinAlgSparse.

Note: you are recommended to use the banded option when no coupled ODEs are present (i.e.,
ncode ¼ 0).

20: algopt½30� – const double Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then algopt½0� should be set to 0:0. Default values will also be used for any
other elements of algopt set to zero. The permissible values, default values, and meanings are as
follows:

algopt½0�
Selects the ODE integration method to be used. If algopt½0� ¼ 1:0, a BDF method is used
and if algopt½0� ¼ 2:0, a Theta method is used. The default value is algopt½0� ¼ 1:0.

If algopt½0� ¼ 2:0, then algopt½i�, for i ¼ 1; 2; 3 are not used.

algopt½1�
Specifies the maximum order of the BDF integration formula to be used. algopt½1� may be
1:0, 2:0, 3:0, 4:0 or 5:0. The default value is algopt½1� ¼ 5:0.

algopt½2�
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If algopt½2� ¼ 1:0 a modified Newton iteration is used and if
algopt½2� ¼ 2:0 a functional iteration method is used. If functional iteration is selected and
the integrator encounters difficulty, then there is an automatic switch to the modified Newton
iteration. The default value is algopt½2� ¼ 1:0.

algopt½3�
Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
Pi;j ¼ 0:0, for j ¼ 1; 2; . . . ; npde for some i or when there is no _V i tð Þ dependence in the
coupled ODE system. If algopt½3� ¼ 1:0, then the Petzold test is used. If algopt½3� ¼ 2:0,
then the Petzold test is not used. The default value is algopt½3� ¼ 1:0.

d03phc NAG C Library Manual

d03phc.10 [NP3660/8]

If algopt½0� ¼ 1:0, then algopt½i�, for i ¼ 4; 5; 6 are not used.

algopt½4�
Specifies the value of Theta to be used in the Theta integration method.
0:51 � algopt½4� � 0:99. The default value is algopt½4� ¼ 0:55.

algopt½5�
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If algopt½5� ¼ 1:0, a modified Newton iteration is used and if
algopt½5� ¼ 2:0, a functional iteration method is used. The default value is algopt½5� ¼ 1:0.

algopt½6�
Specifies whether or not the integrator is allowed to switch automatically between modified
Newton and functional iteration methods in order to be more efficient. If algopt½6� ¼ 1:0,
then switching is allowed and if algopt½6� ¼ 2:0, then switching is not allowed. The default
value is algopt½6� ¼ 1:0.

algopt½10�
Specifies a point in the time direction, tcrit, beyond which integration must not be attempted.
The use of tcrit is described under the argument itask. If algopt½0� 6¼ 0:0, a value of 0:0 for
algopt½10�, say, should be specified even if itask subsequently specifies that tcrit will not be
used.

algopt½11�
Specifies the minimum absolute step size to be allowed in the time integration. If this option
is not required, algopt½11� should be set to 0:0.

algopt½12�
Specifies the maximum absolute step size to be allowed in the time integration. If this option
is not required, algopt½12� should be set to 0.0.

algopt½13�
Specifies the initial step size to be attempted by the integrator. If algopt½13� ¼ 0:0, then the
initial step size is calculated internally.

algopt½14�
Specifies the maximum number of steps to be attempted by the integrator in any one call. If
algopt½14� ¼ 0:0, then no limit is imposed.

algopt½22�
Specifies what method is to be used to solve the nonlinear equations at the initial point to
initialize the values of U , Ut, V and _V . If algopt½22� ¼ 1:0, a modified Newton iteration is
used and if algopt½22� ¼ 2:0, functional iteration is used. The default value is
algopt½22� ¼ 1:0.

algopt½28� and algopt½29� are used only for the sparse matrix algebra option,
laopt ¼ Nag_LinAlgSparse.

algopt½28�
Governs the choice of pivots during the decomposition of the first Jacobian matrix. It should
lie in the range 0:0 < algopt½28� < 1:0, with smaller values biasing the algorithm towards
maintaining sparsity at the expense of numerical stability. If algopt½28� lies outside this range
then the default value is used. If the functions regard the Jacobian matrix as numerically
singular then increasing algopt½28� towards 1:0 may help, but at the cost of increased fill-in.
The default value is algopt½28� ¼ 0:1.

algopt½29�
Is used as a relative pivot threshold during subsequent Jacobian decompositions (see
algopt½28�) below which an internal error is invoked. If algopt½29� is greater than 1:0 no

d03 – Partial Differential Equations d03phc

[NP3660/8] d03phc.11

check is made on the pivot size, and this may be a necessary option if the Jacobian is found
to be numerically singular (see algopt½28�). The default value is algopt½29� ¼ 0:0001.

21: rsave½lrsave� – double Communication Array

If ind ¼ 0, rsave need not be set on entry.

If ind ¼ 1, rsave must be unchanged from the previous call to the function because it contains
required information about the iteration.

22: lrsave – Integer Input

On entry: the dimension of the array rsave as declared in the function from which
nag_pde_parab_1d_fd_ode (d03phc) is called.

Its size depends on the type of matrix algebra selected:

if laopt ¼ Nag_LinAlgFull, lrsave � neqn� neqnþ neqnþ nwkresþ lenode;
if laopt ¼ Nag_LinAlgBand, lrsave � 3�mluþ 1ð Þ � neqnþ nwkresþ lenode;
if laopt ¼ Nag_LinAlgSparse, lrsave � 4� neqnþ 11� neqn=2þ 1þ nwkresþ lenode;

where

mlu ¼ the lower or upper half bandwidths, and
mlu ¼ 3� npde� 1, for PDE problems only, and
mlu ¼ neqn� 1, for coupled PDE/ODE problems.

nwkres ¼ npde� 2� nptsþ 6� nxiþ 3� npdeþ 26ð Þ þ nxiþ ncodeþ 7� nptsþ 2,
when ncode > 0 and nxi > 0, and
nwkres ¼ npde� 2� nptsþ 3� npdeþ 32ð Þ þ ncodeþ 7� nptsþ 3, when ncode > 0
and nxi ¼ 0, and
nwkres ¼ npde� 2� nptsþ 3� npdeþ 32ð Þ þ 7� nptsþ 4, when ncode ¼ 0.

lenode ¼ 6þ int algopt½1�ð Þð Þ � neqnþ 50, when the BDF method is used, and
lenode ¼ 9� neqnþ 50, when the Theta method is used.

Note: when laopt ¼ Nag_LinAlgSparse, the value of lrsave may be too small when supplied to the
integrator. An estimate of the minimum size of lrsave is printed on the current error message unit if
itrace > 0 and the function returns with fail.code ¼ NE_INT_2.

23: isave½lisave� – Integer Communication Array

If ind ¼ 0, isave need not be set on entry.

If ind ¼ 1, isave must be unchanged from the previous call to the function because it contains
required information about the iteration. In particular:

isave½0�
Contains the number of steps taken in time.

isave½1�
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

isave½2�
Contains the number of Jacobian evaluations performed by the time integrator.

isave½3�
Contains the order of the last backward differentiation formula method used.

isave½4�
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves an ODE residual evaluation followed by a back-substitution using the LU
decomposition of the Jacobian matrix.

d03phc NAG C Library Manual

d03phc.12 [NP3660/8]

24: lisave – Integer Input

On entry: the dimension of the array isave as declared in the function from which
nag_pde_parab_1d_fd_ode (d03phc) is called. Its size depends on the type of matrix algebra
selected:

if laopt ¼ Nag_LinAlgFull, lisave � 24;
if laopt ¼ Nag_LinAlgBand, lisave � neqnþ 24;
if laopt ¼ Nag_LinAlgSparse, lisave � 25� neqnþ 24.

Note: when using the sparse option, the value of lisave may be too small when supplied to the
integrator. An estimate of the minimum size of lisave is printed if itrace > 0 and the function returns
with fail.code ¼ NE_INT_2.

25: itask – Integer Input

On entry: specifies the task to be performed by the ODE integrator.

itask ¼ 1

Normal computation of output values u at t ¼ tout.

itask ¼ 2

One step and return.

itask ¼ 3

Stop at first internal integration point at or beyond t ¼ tout.

itask ¼ 4

Normal computation of output values u at t ¼ tout but without overshooting t ¼ tcrit where
tcrit is described under the argument algopt.

itask ¼ 5

Take one step in the time direction and return, without passing tcrit, where tcrit is described
under the argument algopt.

Constraint: 1 � itask � 5.

26: itrace – Integer Input

On entry: the level of trace information required from nag_pde_parab_1d_fd_ode (d03phc) and the
underlying ODE solver. itrace may take the value �1, 0, 1, 2, or 3.

itrace ¼ �1

No output is generated.

itrace ¼ 0

Only warning messages from the PDE solver are printed.

itrace > 0

Output from the underlying ODE solver is printed. This output contains details of Jacobian
entries, the nonlinear iteration and the time integration during the computation of the ODE
system.

If itrace < �1, then �1 is assumed and similarly if itrace > 3, then 3 is assumed.

The advisory messages are given in greater detail as itrace increases.

27: outfile – const char * Input

On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

d03 – Partial Differential Equations d03phc

[NP3660/8] d03phc.13

28: ind – Integer * Input/Output

On entry: must be set to 0 or 1.

ind ¼ 0

Starts or restarts the integration in time.

ind ¼ 1

Continues the integration after an earlier exit from the function. In this case, only the
arguments tout and fail should be reset between calls to nag_pde_parab_1d_fd_ode (d03phc).

Constraint: 0 � ind � 1.

On exit: ind ¼ 1.

29: comm – Nag_Comm * Communication Structure

The NAG communication argument (see Section 2.2.1.1 of the Essential Introduction).

30: saved – Nag_D03_Save * Communication Structure

Note: saved is a NAG defined type (see Section 2.2.1.1 of the Essential Introduction).

saved must remain unchanged following a previous call to a d03 function and prior to any
subsequent call to a d03 function.

31: fail – NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ACC_IN_DOUBT

Integration completed, but small changes in atol or rtol are unlikely to result in a changed solution.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_FAILED_DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This
could be due to your setting ires ¼ 3 in pdedef or bndary.

NE_FAILED_START

atol and rtol were too small to start integration.

NE_FAILED_STEP

Error during Jacobian formulation for ODE system. Increase itrace for further details.

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as
ts: ts ¼ valueh i.
Underlying ODE solver cannot make further progress from the point ts with the supplied values of
atol and rtol. ts ¼ valueh i.

NE_INCOMPAT_PARAM

On entry, m > 0 and x½0� < 0:0: m ¼ valueh i, x½0� ¼ valueh i.

NE_INT

On entry, ind is not equal to 0 or 1: ind ¼ valueh i.

d03phc NAG C Library Manual

d03phc.14 [NP3660/8]

ires set to an invalid value in call to pdedef, bndary, or odedef.

On entry, itask is not equal to 1, 2, 3, 4 or 5: itask ¼ valueh i.
On entry, itol is not equal to 1, 2, 3, or 4: itol ¼ valueh i.
On entry, m is not equal to 0, 1, or 2: m ¼ valueh i.
On entry, ncode ¼ valueh i.
Constraint: ncode � 0.

On entry, npde ¼ valueh i.
Constraint: npde � 1.

On entry, npts ¼ valueh i.
Constraint: npts � 3.

On entry, nxi ¼ valueh i.
Constraint: nxi � 0.

NE_INT_2

On entry, corresponding elements atol½i� 1� and rtol½j� 1� are both zero. i ¼ valueh i, j ¼ valueh i.
On entry, lisave is too small: lisave ¼ valueh i. Minimum possible dimension: valueh i.
On entry, lrsave is too small: lrsave ¼ valueh i. Minimum possible dimension: valueh i.
On entry, ncode ¼ valueh i, nxi ¼ valueh i.
Constraint: if ncode ¼ 0, nxi ¼ 0.

On entry, ncode ¼ valueh i, nxi ¼ valueh i.
Constraint: if ncode > 0, nxi � 0.

When using the sparse option lisave or lrsave is too small: lisave ¼ valueh i, lrsave ¼ valueh i.

NE_INT_4

On entry, neqn ¼ valueh i, npde ¼ valueh i, npts ¼ valueh i, ncode ¼ valueh i.
Constraint: neqn ¼ npde� nptsþ ncode.

On entry, neqn is not equal to npde� nptsþ ncode: neqn ¼ valueh i, npde ¼ valueh i,
npts ¼ valueh i, ncode ¼ valueh i.

NE_INTERNAL_ERROR

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_ITER_FAIL

In solving ODE system, the maximum number of steps algopt½14� has been exceeded.
algopt½14� ¼ valueh i.

NE_NOT_CLOSE_FILE

Cannot close file valueh i.

NE_NOT_STRICTLY_INCREASING

On entry, mesh points x appear to be badly ordered: i ¼ valueh i, x½i� 1� ¼ valueh i, j ¼ valueh i,
x½j� 1� ¼ valueh i.
On entry, xi½i� � xi½i� 1�: i ¼ valueh i, xi½i� ¼ valueh i, xi½i� 1� ¼ valueh i.

NE_NOT_WRITE_FILE

Cannot open file valueh i for writing.

d03 – Partial Differential Equations d03phc

[NP3660/8] d03phc.15

NE_REAL_2

On entry, at least one point in xi lies outside x½0�; x½npts� 1�½ �: x½0� ¼ valueh i,
x½npts� 1� ¼ valueh i.
On entry, tout� ts is too small: tout ¼ valueh i, ts ¼ valueh i.
On entry, tout � ts: tout ¼ valueh i, ts ¼ valueh i.

NE_REAL_ARRAY

On entry, atol½i� 1� < 0:0: i ¼ valueh i, atol½i� 1� ¼ valueh i.
On entry, rtol½i� 1� < 0:0: i ¼ valueh i, rtol½i� 1� ¼ valueh i.

NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_TIME_DERIV_DEP

Flux function appears to depend on time derivatives.

NE_USER_STOP

In evaluating residual of ODE system, ires ¼ 2 has been set in pdedef, bndary, or odedef.
Integration is successful as far as ts: ts ¼ valueh i.

NE_ZERO_WTS

Zero error weights encountered during time integration.

7 Accuracy

nag_pde_parab_1d_fd_ode (d03phc) controls the accuracy of the integration in the time direction but not
the accuracy of the approximation in space. The spatial accuracy depends on both the number of mesh
points and on their distribution in space. In the time integration only the local error over a single step is
controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the
effect of varying the accuracy arguments atol and rtol.

8 Further Comments

The argument specification allows you to include equations with only first-order derivatives in the space
direction but there is no guarantee that the method of integration will be satisfactory for such systems. The
position and nature of the boundary conditions in particular are critical in defining a stable problem. It
may be advisable in such cases to reduce the whole system to first-order and to use the Keller box scheme
function nag_pde_parab_1d_keller_ode (d03pkc).

The time taken depends on the complexity of the parabolic system and on the accuracy requested. For a
given system and a fixed accuracy it is approximately proportional to neqn.

9 Example

This problem provides a simple coupled system of one PDE and one ODE.

V 1ð Þ2@U 1

@t
� xV 1

_V 1
@U1

@x
¼ @2yU1

@x2

_V 1 ¼ V 1U 1 þ
@U1

@x
þ 1þ t,

for t 2 10�4; 0:1� 2i
� �

; i ¼ 1; 2; . . . ; 5; x 2 0; 1½ �.

d03phc NAG C Library Manual

d03phc.16 [NP3660/8]

The left boundary condition at x ¼ 0 is

@U 1

@x
¼ �V 1 exp t.

The right boundary condition at x ¼ 1 is

@U 1

@x
¼ �V 1

_V 1.

The initial conditions at t ¼ 10�4 are defined by the exact solution:

V 1 ¼ t, and U 1 x; tð Þ ¼ exp t 1� xð Þf g � 1:0; x 2 0; 1½ �,
and the coupling point is at �1 ¼ 1:0.

9.1 Program Text

/* nag_pde_parab_1d_fd_ode (d03phc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
* Mark 7b revised, 2004.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
static void pdedef(Integer, double, double, const double[], const double[],

Integer, const double[], const double[], double[],
double[], double[], Integer *, Nag_Comm *);

static void bndary(Integer, double, const double[], const double[],
Integer, const double[], const double[], Integer,
double[], double[], Integer *, Nag_Comm *);

static void odedef(Integer, double, Integer, const double[], const double[],
Integer, const double[], const double[],
const double[], const double[], const double[],
const double[], double[], Integer *, Nag_Comm *);

static void uvinit(Integer, Integer, double *, double *, Integer, Integer,
double);

static void exact(double, Integer, double *, double *);

#define P(I,J) p[npde*((J)-1)+(I)-1]
#define UCPX(I,J) ucpx[npde*((J)-1)+(I)-1]
#define UCP(I,J) ucp[npde*((J)-1)+(I)-1]

int main(void)
{

const Integer npde=1, npts=21, ncode=1, m=0, nxi=1,
neqn=npde*npts+ncode, lisave=24, lenode=11*neqn+50,
nwkres=npde*(npts+6*nxi+3*npde+15)+ncode+nxi+7*npts+2,
lrsave=neqn*neqn+neqn+nwkres+lenode;

double tout, ts;
Integer exit_status, i, ind, it, itask, itol, itrace;
Nag_Boolean theta;
double *algopt=0, *atol=0, *exy=0, *rsave=0, *rtol=0,

*u=0, *x=0, *xi=0;
Integer *isave=0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

/* Allocate memory */

if (!(algopt = NAG_ALLOC(30, double)) ||

d03 – Partial Differential Equations d03phc

[NP3660/8] d03phc.17

!(atol = NAG_ALLOC(1, double)) ||
!(exy = NAG_ALLOC(npts, double)) ||
!(rsave = NAG_ALLOC(lrsave, double)) ||
!(rtol = NAG_ALLOC(1, double)) ||
!(u = NAG_ALLOC(neqn, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
!(xi = NAG_ALLOC(1, double)) ||
!(isave = NAG_ALLOC(lisave, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = 1;
goto END;

}

Vprintf("nag_pde_parab_1d_fd_ode (d03phc) Example Program Results\n\n");
INIT_FAIL(fail);
exit_status = 0;

itrace = 0;
itol = 1;
atol[0] = 1e-4;
rtol[0] = atol[0];

Vprintf(" Simple coupled PDE using BDF\n");
Vprintf(" Accuracy requirement =%10.3e", atol[0]);
Vprintf(" Number of points = %4ld\n\n", npts);

/* Set break-points */

for (i = 0; i < npts; ++i)
{

x[i] = i/(npts-1.0);
}

xi[0] = 1.0;
ind = 0;
itask = 1;

/* Set theta = TRUE if the Theta integrator is required */

theta = Nag_FALSE;
for (i = 0; i < 30; ++i) algopt[i] = 0.0;
if (theta) algopt[0] = 2.0;

/* Loop over output value of t */

ts = 1e-4;
tout = 0.0;
Vprintf(" x %9.3f%9.3f%9.3f%9.3f%9.3f\n\n",

x[0], x[4], x[8], x[12], x[20]);
uvinit(npde, npts, x, u, npde, neqn, ts);

for (it = 0; it < 5; ++it)
{

tout = 0.1*pow(2.0, (it+1.0));
/* nag_pde_parab_1d_fd_ode (d03phc).
* General system of parabolic PDEs, coupled DAEs, method of
* lines, finite differences, one space variable
*/

nag_pde_parab_1d_fd_ode(npde, m, &ts, tout, pdedef, bndary, u, npts, x,
ncode, odedef, nxi, xi, neqn, rtol, atol, itol,
Nag_TwoNorm, Nag_LinAlgFull, algopt, rsave,
lrsave, isave, lisave, itask, itrace, 0, &ind,
&comm, &saved, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_pde_parab_1d_fd_ode (d03phc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

d03phc NAG C Library Manual

d03phc.18 [NP3660/8]

}

/* Check against the exact solution */

exact(tout, npts, x, exy);
Vprintf(" t = %6.3f\n", ts);
Vprintf(" App. sol. %7.3f%9.3f%9.3f%9.3f%9.3f",

u[0], u[4], u[8], u[12], u[20]);
Vprintf(" ODE sol. =%8.3f\n", u[21]);
Vprintf(" Exact sol. %7.3f%9.3f%9.3f%9.3f%9.3f",

exy[0], exy[4], exy[8], exy[12], exy[20]);
Vprintf(" ODE sol. =%8.3f\n\n", ts);

}
Vprintf(" Number of integration steps in time = %6ld\n", isave[0]);
Vprintf(" Number of function evaluations = %6ld\n", isave[1]);
Vprintf(" Number of Jacobian evaluations =%6ld\n", isave[2]);
Vprintf(" Number of iterations = %6ld\n\n", isave[4]);

END:
if (algopt) NAG_FREE(algopt);
if (atol) NAG_FREE(atol);
if (exy) NAG_FREE(exy);
if (rsave) NAG_FREE(rsave);
if (rtol) NAG_FREE(rtol);
if (u) NAG_FREE(u);
if (x) NAG_FREE(x);
if (xi) NAG_FREE(xi);
if (isave) NAG_FREE(isave);

return exit_status;
}
static void pdedef(Integer npde, double t, double x, const double u[],

const double ux[], Integer ncode, const double v[],
const double vdot[], double p[], double q[],
double r[], Integer *ires, Nag_Comm *comm)

{
P(1, 1) = v[0] * v[0];
r[0] = ux[0];
q[0] = -(x) * ux[0] * v[0] * vdot[0];

return;
}
static void bndary(Integer npde, double t, const double u[],

const double ux[], Integer ncode, const double v[],
const double vdot[], Integer ibnd, double beta[],
double gamma[], Integer *ires, Nag_Comm *comm)

{
beta[0] = 1.0;
if (ibnd == 0)

{
gamma[0] = -v[0]*exp(t);

} else {
gamma[0] = -v[0]*vdot[0];

}
return;

}
static void odedef(Integer npde, double t, Integer ncode, const double v[],

const double vdot[], Integer nxi, const double xi[],
const double ucp[], const double ucpx[],
const double rcp[], const double ucpt[],
const double ucptx[], double f[], Integer *ires,
Nag_Comm *comm)

{
if (*ires == 1)

{
f[0] = vdot[0] - v[0] * UCP(1, 1) - UCPX(1, 1) - 1.0 - t;

} else if (*ires == -1) {
f[0] = vdot[0];

}
return;

}
static void uvinit(Integer npde, Integer npts, double *x,

d03 – Partial Differential Equations d03phc

[NP3660/8] d03phc.19

double *u, Integer ncode, Integer neqn, double ts)
{

/* Routine for PDE initial values */

Integer i;

for (i = 0; i < npts; ++i)
{

u[i] = exp(ts*(1.0 - x[i])) - 1.0;
}

u[neqn-1] = ts;

return;
}
static void exact(double time, Integer npts, double *x, double *u)
{

/* Exact solution (for comparison purpose) */

Integer i;
for (i = 0; i < npts; ++i)

{
u[i] = exp(time*(1.0 - x[i])) - 1.0;

}
return;

}

9.2 Program Data

None.

9.3 Program Results

nag_pde_parab_1d_fd_ode (d03phc) Example Program Results

Simple coupled PDE using BDF
Accuracy requirement = 1.000e-04 Number of points = 21

x 0.000 0.200 0.400 0.600 1.000

t = 0.200
App. sol. 0.222 0.174 0.128 0.084 0.001 ODE sol. = 0.200
Exact sol. 0.221 0.174 0.127 0.083 0.000 ODE sol. = 0.200

t = 0.400
App. sol. 0.494 0.379 0.273 0.176 0.002 ODE sol. = 0.400
Exact sol. 0.492 0.377 0.271 0.174 0.000 ODE sol. = 0.400

t = 0.800
App. sol. 1.229 0.901 0.622 0.384 0.008 ODE sol. = 0.798
Exact sol. 1.226 0.896 0.616 0.377 0.000 ODE sol. = 0.800

t = 1.600
App. sol. 3.959 2.610 1.629 0.917 0.027 ODE sol. = 1.594
Exact sol. 3.953 2.597 1.612 0.896 0.000 ODE sol. = 1.600

t = 3.200
App. sol. 23.469 11.974 5.885 2.665 0.074 ODE sol. = 3.184
Exact sol. 23.533 11.936 5.821 2.597 0.000 ODE sol. = 3.200

Number of integration steps in time = 33
Number of function evaluations = 470
Number of Jacobian evaluations = 16
Number of iterations = 111

d03phc NAG C Library Manual

d03phc.20 (last) [NP3660/8]

	d03phc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	npde
	m
	ts
	tout
	pdedef
	npde
	t
	x
	u
	ux
	ncode
	v
	vdot
	p
	q
	r
	ires
	comm
	user
	iuser
	p

	bndary
	npde
	t
	u
	ux
	ncode
	v
	vdot
	ibnd
	beta
	gamma
	ires
	comm
	user
	iuser
	p

	u
	npts
	x
	ncode
	odedef
	npde
	t
	ncode
	v
	vdot
	nxi
	xi
	ucp
	ucpx
	rcp
	ucpt
	ucptx
	f
	ires
	comm
	user
	iuser
	p

	nxi
	xi
	neqn
	rtol
	atol
	itol
	norm
	laopt
	algopt
	rsave
	lrsave
	isave
	lisave
	itask
	itrace
	outfile
	ind
	comm
	saved
	fail

	6 Error Indicators and Warnings
	NE_ACC_IN_DOUBT
	NE_BAD_PARAM
	NE_FAILED_DERIV
	NE_FAILED_START
	NE_FAILED_STEP
	NE_INCOMPAT_PARAM
	NE_INT
	NE_INT_2
	NE_INT_4
	NE_INTERNAL_ERROR
	NE_ITER_FAIL
	NE_NOT_CLOSE_FILE
	NE_NOT_STRICTLY_INCREASING
	NE_NOT_WRITE_FILE
	NE_REAL_2
	NE_REAL_ARRAY
	NE_SING_JAC
	NE_TIME_DERIV_DEP
	NE_USER_STOP
	NE_ZERO_WTS

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

